skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De_la_Fuente, Luis A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Finding similarities between model parameters across different catchments has proved to be challenging. Existing approaches struggle due to catchment heterogeneity and non‐linear dynamics. In particular, attempts to correlate catchment attributes with hydrological responses have failed due to interdependencies among variables and consequent equifinality. Machine Learning (ML), particularly the Long Short‐Term Memory (LSTM) approach, has demonstrated strong predictive and spatial regionalization performance. However, understanding the nature of the regionalization relationships remains difficult. This study proposes a novel approach to partially decouple learning the representation of (a) catchment dynamics by using theHydroLSTMarchitecture and (b) spatial regionalization relationships by using aRandom Forest(RF) clustering approach to learn the relationships between the catchment attributes and dynamics. This coupled approach, calledRegional HydroLSTM, learns a representation of “potential streamflow” using a single cell‐state, while the output gate corrects it to correspond to the temporal context of the current hydrologic regime. RF clusters mediate the relationship between catchment attributes and dynamics, allowing identification of spatially consistent hydrological regions, thereby providing insight into the factors driving spatial and temporal hydrological variability. Results suggest that by combining complementary architectures, we can enhance the interpretability of regional machine learning models in hydrology, offering a new perspective on the “catchment classification” problem. We conclude that an improved understanding of the underlying nature of hydrologic systems can be achieved by careful design of ML architectures to target the specific things we are seeking to learn from the data. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026